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Polynomial and exponential growth

Introduction

• In this topic, we will

– Consider how we need to analyze and find the polynomial 
growth of data anb or O(nb)

– Walk through an example

– Consider how we need to analyze and find exponential 
growth or decay of data aebn

– Walk through an example
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Fitting a polynomial

• Recall that you can fit a polynomial to data
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Fitting linear combinations of functions

• You can also fit any linear combination of functions:

T = a + b ln(n)
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Other forms of data

• Consider these situations:

– Your run-time shows polynomial growth with respect to capacity: 

T(n) = anb + o(nb)

– Your data is growing or decaying exponentially over time:

y(t) = a ebt

• It is important to note:

– Neither of these is in the form a1x + a0

– In the first case, if y = a xb, then

ln(a xb) = ln(a) + b ln(x)

– In the second case, if y = a ebx, then

ln(y) = ln(a ebx) = ln(a) + bx
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Polynomial growth

• Polynomial growth is described by any function that is O(nd)

– Suppose you’ve just implemented a bi-parental heap that 
contains n items

• You know that certain operations are

– You just authored the Karatsuba algorithm for multiplying two 
n-digit integers

• You know the run time must be 
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Polynomial growth

• So, you time your operation on the bi-parental heap for various 
values of n = 2k items contained in the container

– It looks like                 but is it O(n2/3)? 

– We should find the best fitting T(n) = anb and see if b ≈ 0.5
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Polynomial growth

• Alternatively, you try your integer multiplication routine with
some large-integer class with integers of n = 2m digits

– It looks like                     but is it O(n2)? 

– We should find the best fitting T(n) = anb and see if b ≈ 1.585
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Polynomial growth

• Alternatively, suppose you’ve implemented a new algorithm and 
you’d like to determine the asymptotic behavior
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Polynomial growth

• Suppose data has polynomial growth, so

– Therefore, for larger values of nk, we have

– Thus, taking logarithms of both sides yields
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Polynomial growth

• Let’s try this out:

>> ns = [1 2 4 8 16 32 64 128 256 512 1024];

>> Ts = 5.32*ns.^1.35;

>> plot( ns, Ts, 'o' );

Polynomial and exponential growth
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1.355.32k kT n=

Polynomial growth

• Let’s try this out:

>> ns = [1 2 4 8 16 32 64 128 256 512 1024];

>> Ts = 5.32*ns.^1.35;

>> plot( log( ns ), log( Ts ), 'o' );

– The slope of the
line is 1.35

– The y-intercept
is ln(5.32)

– Recall that log(x)
is the natural

logarithm ln(x)

log2(x)

log10(x)
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Polynomial growth

• How can we use this?

– You have authored your algorithm and run it on various input
sizes (values of n) and recorded the run time

– Two issues:

• Your program is not running in exactly in anb time

– It will be anb + o(nb), so a log-log plot will not be a straight line

• There will be noise in your timings

Polynomial and exponential growth
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Polynomial growth

• Step 1: Collect data

– Use exponentially growing values of n = 2k for k = 0, 1, 2, 3, …, Nmax

and record the time Tk for n = 2k

• Try to get as many points as is reasonable,
so sizes up to n = 216 or more (Nmax ≥ 16)

– This ensures lower-order terms are overwhelmed by the 
dominant term

• If the run time is too large for problems of size n = 216,

use                     or even 

– Gather at least two sample run times per n,
as each sample will likely have some error in the timing

• With three samples, we will have Tk,1, Tk,2 and Tk,3

• You cannot determine error from a single sample

Polynomial and exponential growth
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Polynomial growth

• For example, if the algorithm is Gaussian elimination and 
backward substitution, we may be able to deduce that the 
average run time is 

– If n = 10,
the higher-order term is just twice the lower-order terms

– If n = 100,
the higher-order term is 23.5 times the lower-order terms

– In the limit, the higher order term will be
0.24n times the lower-order terms
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Polynomial growth

• For example:
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Polynomial growth

• Step 2: Analysis

– Plot a log-log plot of log(2k) versus log( Tk, j )

– It doesn’t matter the base of the logarithm,
so long as both are the same

• If you use a base-2 logarithm, the powers of two are integers

• Recall that lg(n) often represents log2(n)

– Determine visually if it appears in the limit to be a straight line

• If it isn’t, you may have exponential growth or decay!

– Determine at which point it seems that the effect of the lower-
order terms (the o(nb) component) has diminished impact

Polynomial and exponential growth
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Polynomial growth

• For example:
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Polynomial growth

• Step 3: Linear regression

– On those points you

determined were reasonable,

preform a linear regression

– Solve

Polynomial and exponential growth
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Polynomial growth

• For example:

Polynomial and exponential growth
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Polynomial growth

• Thus, if lg(T) ≈ 1.572 lg(n) – 4.325, it follows

T = 2lg(T) ≈ 21.572 lg(n) – 4.325

= 21.572 lg(n) 2–4.325

≈ n1.572 0.04989

= 0.04989 n1.572

Polynomial and exponential growth
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Exponential growth or decay

• Exponential growth is described by any function that is Q(ebn)

– This includes radioactive decay

– It also describes exponential growth:

• Moore’s law says that the number of transistors in a dense 
integrated circuit doubles every at two years since 1970

• I found a paper by Anthony Ricciardi and Rachael Ryan:

The exponential growth of invasive species denialism

– This is number of years since 1990

Polynomial and exponential growth
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Exponential growth or decay

• Suppose you are counting the number hives of Asian giant 
hornets found in North America

Polynomial and exponential growth
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Exponential growth or decay

• Suppose data has exponential growth or decay, so

– Therefore, for various values of nk, we have 

– Thus, taking logarithms of both sides yields
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Exponential growth or decay

• Let’s try this out:

>> ns = 0:10;

>> Cs = 8.23*exp( -0.2*ns );

>> plot( ns, Cs, 'o' );

Polynomial and exponential growth
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Exponential growth or decay

• Let’s try this out:

>> ns = 0:10;

>> Cs = 8.23*exp( -0.2*ns );

>> plot( ns, log( Cs ), 'o' );

– The slope of the
line is –0.2

– The y-intercept
is ln( 8.23 )

Polynomial and exponential growth
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Exponential growth or decay

• How can we use this?

– You have collected your data and you understand it to be 
growing or decaying exponentially

– Two issues:

• There will be noise in your data

• There may be other factors

Polynomial and exponential growth
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Exponential growth or decay

• Step 1: Collect data

– Use different values of (n0, C0), (n1, C1), (n2, C2), …, (nN, CN), 

• Try to get as many points as is reasonable

• Equally spaced points are common, but not required

• Often n0 = 0, but this is not required

– If possible, gather at least two samples per n,
as each sample will likely have some error in the count

• With three samples, we will have Ck,1, Ck,2 and Ck,3

• You cannot determine error from a single sample

Polynomial and exponential growth

28

27

28



6/17/2021

15

Exponential growth or decay

• For example:

Polynomial and exponential growth
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Exponential growth or decay

• Step 2: Analysis

– Plot a semi-log plot of nk versus ln( Ck, j )

– It doesn’t matter the base of the logarithm,
so long as we use the same base later

– Determine visually if it appears to be a straight line

• If it isn’t, you may have polynomial growth or decay!

Polynomial and exponential growth
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Exponential growth or decay

• For example:

Polynomial and exponential growth
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Exponential growth or decay

• Step 3: Linear regression

– On those points you

determined were reasonable,

preform a linear regression

– Solve

Polynomial and exponential growth
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Exponential growth or decay

• For example:

Polynomial and exponential growth
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lg(C) ≈ 1.572 – 0.235n

n

ln(C )

Exponential growth or decay

• Thus, if ln(C) ≈ 1.572 – 0.235n, it follows

C = eln(C) ≈ e1.572 – 0.235n

= e1.572 e– 0.235n

≈ 4.816 e– 0.235n

– We can also find the half-life by solving e–0.735n = 0.5

– Thus, the half life is n½ = – ln(0.5)/0.235 = 2.9496

Polynomial and exponential growth
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Exponential growth or decay

• If the data was exponentially growing:

– The coefficient b > 0

– You can calculate the doubling time by solving ebn = 2 once you 
have estimated b

Polynomial and exponential growth
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Polynomial-logarithmic growth

• What do we do about growth that are in these forms?

T = anb ln(n) or T = anb lnc(n)

– Problem: ln(n) = o(nb) for any b > 0

– Consequently, you could do the following:

ln(T) = ln(a) + b ln(n) + ln(ln(n))

ln(T) – ln(ln(n)) = ln(a) + b ln(n)

ln(T) = ln(a) + b ln(n) + c ln(ln(n))

– This may be useful to confirm an implementation is, say, n ln(n)

• These techniques may be useful if you are testing for:

T = a lnc(n)

– Thus, we would match ln(T) = ln(a) + c ln(ln(n))

Polynomial and exponential growth
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Example 1

• Suppose we have this example:

>> xs = [3    5    8   11   15   18   19    24    25]';

>> ys = [8.4 10.5 15.5 25.8 49.7 80.3 98.5 184.5 260.0]';

>> plot( xs, ys, 'o' );

– Is it growing polynomially or exponentially?

Polynomial and exponential growth
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Example 1

• Let’s plot both:

>> plot( xs, log( ys ), 'o' );

>> plot( log( xs ), log( ys ), 'o' );

Polynomial and exponential growth
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Example 1

• We can find the best-fitting exponential curve:

>> V = [ones(9,1) xs];

>> a = V \ log( ys )

a =

1.576485560599445

0.155801668985937

>> exp( a(1) )

ans = 4.837923310623190

Polynomial and exponential growth
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Example 1

• We can now plot the data and the best-fitting exponential curve:

>> plot( xs, ys, 'o' )

>> hold on

>> xv = 0:0.1:25;

>> plot( xv, 4.8379*exp(0.1558*xv), 'r' );

Polynomial and exponential growth
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Example 2

• Suppose we have this example:

>> xs = [3   5   8   11   15   18   19   24   25]';

>> ys = [0.1 0.3 0.9 2.8  7.9 12.5 19.2 18.2 29.5]';

>> plot( xs, ys, 'o' );

– Is it growing polynomially or exponentially?

Polynomial and exponential growth
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Example 2

• Let’s plot both:

>> plot( xs, log( ys ), 'o' );

>> plot( log( xs ), log( ys ), 'o' );

Polynomial and exponential growth
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Example 2

• We can find the best-fitting polynomial curve:

>> V = [ones(9,1) log( xs )];

>> a = V \ log( ys )

a =

-5.519325745036392

2.753647782022680

>> exp( a(1) )

ans = 4.008549815722325e-03

Polynomial and exponential growth
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Example 2

• We can now plot the data and the best-fitting exponential curve:

>> plot( xs, ys, 'o' )

>> hold on

>> xv = 0:0.1:25;

>> plot( xv, 0.004009*xv.^2.7536, 'r' );

Polynomial and exponential growth
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Summary

• Following this topic, you now

– Understand that you can use least-squares best-fitting linear 
polynomials to find both polynomial and exponential growth

– Know the data may be transformed to being linear by:

• Taking the logarithm of both values for polynomial growth

• Taking the logarithm of the counts for exponential growth or decay

– Understand that using least-squares best-fitting techniques,
this gives us the best estimates of the unknown coefficients

– Know that you can calculate the half life for exponential decay by 
solving ebn = ½ and the doubling time by solving ebn = 2

Appproximating integrals using interpolating polynomials
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Colophon 

These slides were prepared using the Cambria typeface. Mathematical equations 
use Times New Roman, and source code is presented using Consolas.  
Mathematical equations are prepared in MathType by Design Science, Inc.

Examples may be formulated and checked using Maple by Maplesoft, Inc.

The photographs of flowers and a monarch butter appearing on the title slide and 
accenting the top of each other slide were taken at the Royal Botanical Gardens in 
October of 2017 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.
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Disclaimer

These slides are provided for the ECE 204 Numerical methods
course taught at the University of Waterloo. The material in it
reflects the author’s best judgment in light of the information
available to them at the time of preparation. Any reliance on these
course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility
for damages, if any, suffered by any party as a result of decisions
made or actions based on these course slides for any other purpose
than that for which it was intended.
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